Supplementary Information

Testing for ancient admixture between closely related species

Eric Y. Durand^{1,*}, Nick Patterson², David Reich² and Montgomery Slatkin¹

¹Department of Integrative Biology, University of California, Berkeley, CA 94720;

²Broad Institute of MIT and Harvard, Cambridge, MA 02142.

*To whom correspondence should be addressed; e-mail: eric.durand@berkeley.edu

Figure S1: Model of instantaneous admixture with a ghost population. P_1 and P_2 split at time t_{P2} . P_3 split from the ancestral population of P_1 and P_2 , denoted $P_{(12)}$, at time t_{P3} . An unsampled, ghost population denoted P_G split from the ancestral population of P_1 , P_2 and P_3 at time t_G . A single episode of admixture takes place from P_G to P_1 at rate f_G . This model can fit the same D-statistics as the IUA model because, in the case where P_1 originated from P_G (probability f_G), P_1 and P_2 have an extra opportunity to coalesce between t_{P3} and t_G .

Figure S2: Model of instantaneous admixture where a sister group of P_3 is available. The sister population, P_4 , split from P_3 at time t_{P4} . P_3 split from the ancestral population of P_1 and P_2 , denoted $P_{(12)}$, at time t_{P3} . A single episode of admixture takes place from P_3 to P_2 at time t_{GF} . We denote the admixture proportion by f. The sample from P_4 leads to an unbiased estimator of f that does not depend on any other demographic parameters.

Figure S3: Model of instantaneous admixture where the admixing population has not been sampled. Instead, an outgroup to P_1 and P_2 , denoted P_0 , has been sampled. P_0 split from the ancestral population of P_1 and P_2 at time t_{P0} . A single episode of admixture takes place from P_3 to P_2 at time t_{GF} , but P_3 has not been sampled. The admixture proportion is f. This model allows us to estimate f without using the sample from the archaic population. In the case, because P_2 originated from P_3 (probability f), P_1 and P_0 have an extra opportunity to coalesce between t_{P0} and t_{P3} .

Figure S4: $D(P_1, P_2, P_3, 0)$ as a function of T under the AS model for different migration rates m, N=10,000, $t_{P2}=3,000$ generations and $t_{P3}=12,000$ generations. The dashed horizontal line represents $D(P_1, P_2, P_3, 0)=0.05$, corresponding roughly to the observed value in (Green et al. 2010). In a model with no migration (black curve), T needs to be roughly 13,000 generation to match $D(P_1, P_2, P_3, 0)=0.05$. The value of T corresponding to $D(P_1, P_2, P_3, 0)=0.05$ increases quickly with T. Note that, under the AS model, low migration rates predict that P_1 and P_2 are more diverged than P_2 and P_3 .